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Abstxaet-An effective analytical method is suggested for the solution of direct and inverse problems of 
heat conduction, thennoelastic stresses and heat transfer by singly and doubly taking integral trans- 
formations with respect to unilateral parabolic variables and by implementing the method of finite elements 
of the orthogonal residual projection in a certain functional space over the entire range of variation of 

bilateral elliptical coordinates. 

THE SOLUTION of unsteady-state heat conduction and 
heat transfer boundary-value problems for heat trans- 
fer agent flow in tubes under the conditions of asym- 
metric thermal loading by applying rigorous ana- 
lytical methods leads to rather cumbersome 
mathematical transformations, with the temperature 
fields being expressed by complex functional series, 
thus making it difficult to incorporate the solutions 
obtained into thermal engineering practice. A tem- 
perature field can be represented by a simple, reason- 
ably accurate analytical formula which is especially 
important when being obtained for the intermediate 
stage in the solution of more complex problems such 
as, for example, the determination of thermoelastic 
stresses in the elements of constructions or the study 
of inverse heat conduction and heat transfer 
problems. One of these methods is suggested in the 
present paper. It is based on simultaneous application 
of integral transformations with respect to unilateral 
parabolic variables and of the orthogonal residual 
projection for the differential operator of transfer in 
a certain functional space over bilateral elliptic coor- 
dinates in the terminology of Patankar [l]. The 
method allows one to find solutions for a wide range 
of problems in one- and two-dimensional bodies of 
simple and complex shapes, i.e. to find approximate 
analytical solutions even in those cases, when exact 
solutions are impossible. 

As is known, in most cases the solutions of hydro- 
dynamics and heat transfer problems by classical 
methods “contain infinite series, special functions, 
transcendental equations for eigenvalues etc., and 
their numerical estimates may present a very for- 
midable problem” [l]. As a rule, only partial sums of 
several terms from the resulting functional series are 
used for calculations. The technique suggested in this 
paper for determining temperature fields makes it 
possible to find approximate solutions, equivalent to 
these terms, in the form of polynomials in spatial 
elliptical coordinates the coefficients of which are 
exponentially stabilized over parabolic variables (over 
the time and longitudinal unilateral coordinate). Then 
for a certain class of entry functions of the tem- 

perature perturbation such an approximate solution 
is found, by using the method of an optimal selection 
of a system of basic coordinates, the asymptote of 
which coincides with an exact solution Fo + co and 
X+ co [2]. Note that these limiting solutions cannot 
be obtained from a partial sum. 

The method developed in the course of the solution 
of the main problem yields rather accurate values for 
the squared roots of a characteristic equation (of the 
first and subsequent eigenvalues) without solving the 
transcendental equations themselves. This is impor- 
tant for studying the processes occurring under reg- 
ular and quasi-regular conditions in multi-dimen- 
sional geometric bodies for which it is impossible to 
write the transfer equations in explicit characteristic 
form. 

The method will now be presented in relation to the 
solution of direct and inverse non-stationary prob- 
lems of heat conduction, thermal stresses and heat 
transfer during liquid flow in tubes. 

(1) The problems of heat conduction in a plate 
(I = 0), in the wall of a circular tube (I = 1) and 
in a spherical shell (I = 2), that exchanges heat by 
convection with media having temperatures c$,(Fo) 
and dz(Fo), admit a single statement 

ar 

aF0 = (mp+l)r ap 
l d((,p+l)r~)+q~(P,~)Rz 

(1) 

[UP, Wl~o= o = To 

8T 
--Bi, T(p,Fo) 
ap 

= -Bi, q5,(Fo) 

(2) 

8T 
ap + Bi, T(P, Fo) = Biz MW (3) 

Equations (l)--(3) involve many typical heat con- 
duction problems for bodies of three classical geo- 
metric shapes. For example, when Bi, = 1, R, = 0, 
there is a problem for solid bodies. 
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NOMENCLATURE 

a thermal diffusivity Greek symbols 
Bi Biot number, arR/I B coefficient of volumetric expansion 

“E 
heat capacity 
Young’s modulus ; 

specific density 
geometric shape parameter 

Fo Fourier number, at/R 2 1 thermal conductivity 
k RJR, D relative excess temperature 

x 
R/R, P instantaneous relative coordinate, 
Predvoditelev number C-RJR. 

PO Pomerantsev number, 

CC!“& 2)/WW - T,) 
r instantaneous radius 
R wall thickness, R2 - R t 

R,,R, inner and outer radii of a hollow Other symbol 
cylinder or spherical shell ‘+ sign of transition to the double integral 

x relative coordinate of a semi-infinite Laplace transform and Fourier 
rod, x/R. cosine transform region. 

Assume that is taken to be 

s 

a0 
W%P) = T(p,Fo)exp (-pFo)dFo 

$ (p) _ W*+W+Bi,p) _p* 
I-- 

0 
Bi,fBi2+Bi,Bi2 

then in the space of the Laplace integral transforms and the rest functions are selected apriori, for example 

one obtains ~*(~~ = (1 -p)*$, k z 2. 

(5) 

By using the method of undetermined coefficients, 
the linear function 6(p,p) = Ap+B is found, which 
satisfies conditions (5) and then 

The coefficient images C,(p) in the presence of which 
the left-hand side of equation (4) deviates the least 
from zero over the entire range of p are found by 
requiring that the residual .Y[F,,(p,p)] + 0 be ortho- 
gonal with respect to all basic coordinates $I~(@) 

Upon integration with respect to p the system is 
reduced to 

j= 1,23-..,n 

(8) 

The approximate solution of boundary problems (4) 
and (5) is considered as an element (vector) in the where 

finite-dimensional space and belongs to the set of com- 
position of the form Ajk=A,= -ji$((mp+l)‘~)ll;(p)dp>O 

where the system of basic coordinates ($&I)} satisfies 
homogeneous boundary conditions (5). The optimal 
first basic function for the cases 

lim q,(p,Fo) = q0 = const. Fo-cc The dete~ination of Cr,(p) from system (8) by the 



formula 

(10) 
also an expression for the second eigenvalue. These 
investigations and comparisons are discussed in ref. 
121. The uncertainties of the aforegoing equations 

and the transition to the domain of inverted trans- increase monotonously with Bi and at Bi = 00 attain 
forms using the convolution theorem [3] yields the greatest value not exceeding 3-5%. 

In order to implement the algorithm of the method 
on electronic digital computers, the solutions in the 
third and subsequent approximations should be 
obtained at the given values of Bi, r. The results of 

(11) calculations of the eigenvalues for a cylinder (I = 1) 

where Ah@) = IA + Bpl is the main determinant of sys- 
under the first-kind boundary conditions (Bi = 00) by 

tem (8) ; Pi < 0 are the simple roots of A@) = 0 ; 
solving the equation A(p) = 0 up to the fifth order 

Ajk(p) are the cofactors of the determinant A(p); 
and a comparison with exact solutions are set out in 

Dj(Fo) is the inverted transform fij(p) ; A’ = dA/dp. 
Table 1. The approximate eigenvalues always exceed 

After transition to the domain of inverted trans- 
the exact ones and monotonously tend to the latter 

forms in relation (7) taking into account equation 
with an increasing order n. This trend is observed for 

(1 I), it is possible to find the solution of the problem 
all one- and multi-dimensional bodies of simple and 

on compliance with the specific conditions of unique- 
complex shapes. 

ness for the entry functions of temperature per- 
Let 

turbation 9,(Fo) = To, #J#o) = &Fe)+ 

cP,(Fo), &(Fo), q&‘,Fo). q,(p,Ir0) = 0, r = 0 

Hence, the proposed algorithm for the solution of the then the truncated system of equations (8) will yield 

problem posed requires the setting up of algebraic 
system (8) and then the conversion by a single equa- 
tion (11) for all the three bodies of classical shapes, where 
thus enabling one to run all laborious calculations on 
an electronic computer when obtaining an analytical 

A(Bi,,B&) = 5w[Bi,BiZ+4(Bi, fB&)+ 121 

solution or implementing the difference method. x(Bi,+Bi,+Bi, BiJ 

Let R, = 0, Bit = 0, Bit = Bi, q,(p, PO) = q. ~(Bi,, Biz) = 2.5wBiJBi: Biz+5Bi, 
= const. Then the truncated system (8) of first order 
gives x(Bi,+Bi2)+8Bi2+20Bi,+24] 

0 --I = Bi:Bi$f24Bi, Bizf7Bi, Biz(Bi,+Bi2) 

+16(Bi:+Bi$+80(Bi,+Bi2)+120. (16) 

1 The relative excess temperature in a plane wall in 

p+A(Bi,r) 1 (12) the case of an exponential variation in the temperature 

where of the surroundings 

A(Bi, r) = 
Bi(T+l)(r+5)(Bi+3+r) 

2Bi2+2Bi(T+5)+(TZ+ 18I+ 15)’ (13) 
r$(Fo) = T,+(T,--T,)[l-exp(-PdFo)] (17) 

will be written as 

Equation (12) makes it possible to find one unified 
solution for the three bodies when the variation in the 
surrounding temperature follows a specific law. When 
&(Fo) = const., one obtains 

w, Fo) - To = 1 _ AW, n 
%b Fo) = ___-. 

Tc-To 2tr-b 1) 

xr$--p’)exp[--A(Bi,T)Fo]+& 

Ri,SBiz+Bi, Bi2 +A-Pd 

x {exp[-A(Bi,,Bi,)Fo]-exp(-PdFo)) 

(2+Bi,)(l SBi, p) 

Bi, +Biz+Bi, Biz -” 1 ’ (18) 
x (1 -exp [-A(& I-)Fo]) (+ -p’). (14) When Pd + co, equation (18) will give in the limit the 

When Fo -+ co, this yields an exact solution of the 
solution for a jump-wise variation in the surrounding 
medium temperature #(Fo) = T, > T,. The variation 

stationary problem. The quantity A(Bi, r) approxi- 
mates, with good accuracy, the dependence of the 

of B predicted by equation (18) at Pd = m, Bi, = 1, 
Biz = 2 coincides completely with exact values at the 

first squared roots on Bi of the three characteristic points p = 0,0.5, and 1 when Fo > 0.05 [Z]. The con- 
eauations for a mate. cvlinder and a snhere. The solu- --,--. ark ,_1 vergence improves at the finite number Pd. 
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tion of the truncated system (8) of second order may 
give a more precise equation, than relation (13) and 

Bi,[l-exp(-PdFo)](l+Bi,p) NPd 
= 
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Table 1. Computation of the eigenvalues for the problem of heat conduction of a cylinder 
and comparison with exact values 

Exact 
k n=l n=2 n=3 n=4 n=5 values 

1 6 5.7841 5.7832 5.783 1 5.7831 5.783 1 
2 36.8825 30.7121 30.4716 30.4715 30.47 15 
3 113.5047 78.2398 74.8960 74.8865 
4 269.3183 161.1534 139.0395 
5 450.0123 222.9318 

The results of comparison of A(Bi,, BiJ by equa- 
tion (16) with exact values of p: from [4] 

ctg/.l = 
p2-Bi, Bi2 

p(Bi, + Biz) 
(19) 

are given in Table 2. 
It will be assumed for problems (l)-(3) that 

d,(Fo) = C$(Fo), C$*(Fo) = T,, qL’ = 0, l- = 1 

then the coefficient-transform 5, @) can also be deter- 
mined from equation (15) with the only difference that 
the quantities A and N for the round tube wall are 
equal to 

Equations (15), (16) and (20) allow one to find the 
solutions for a plate and for a tube wall at any forms 
of the entry function I. According to the present 
method, equation (20) yields, with a slight excess, 
the square of the first root in the characteristic heat 
conduction equation for a hollow cylinder under 
asymmetric third-kind boundary conditions when the 
surfaces are exposed to media with different heat 
transfer coefficients a, and u2. To the best of the 
present author’s knowledge, the form and solution of 
such an equation are not available in the literature. 
However, under the third- and second-kind boundary 
conditions (Bi, = Bi # 0, Bi, = 0) equation (20) gives 

lOBi[Bi(k+3)(k+ l)+ 121 

A(Bi’k)= (k-l)[Bi’(k-1)*(11k+5)+10B@+1)(%+3)+60(k+1)] (21) 

A(Bi,, Bi,,k) = lOo(Bi: Bi:(k+ l)+Bi: Bi,(6k+4) which coincides well with p: of the equation [5] 

+Bi:Bi,(4k+6) +20(k+l)Bi, Bi,+Bif(2k+6) 

+Bit(6k+2)+24(Bi, +Bi,)] 
JI (P) + B~PJ&) . w = 1, 
Y, (d + BiIp Yo (P) J, (kd 

(22) 

N(Bi,,Bi*,k) = o[Bi:Bi@k+3)+Bi, Bi,(12k+8) (2) The representation of temperature fields by 

+Bi:(7k+18)+&,(25k+15)+Bi,(35k+65) simple and rather accurate expressions has made it 
possible to find effective analytical solutions for tem- 

+60(k+ l)] perature stresses in elastic deformations occurring due 

0 --I = Bi:Bi;(k+l)+Bi:Bi,(8k+6) to non-stationary temperature gradients in a body 

+Bi, Bi;(6k+8)+42Bi, Bi,(k+l) 
exposed to different external thermal effects, including 
a thermal shock [2,6]. Let the temperature, found 

+Bi:(22k+10)+Bi:(10k+22)+10Bi,(10k+6) from equation (12) under boundary conditions (17) 
and qu = 0, be substituted into the equations for shear 

+ 10Bi2(6k+ lo)+ 120(k+ 1). (20) stresses inside a cylinder and a sphere [7]. This will 

Table 2. Comparison of the value of A(Bi,, Bi2) (upper line) with 1(: of equation (19) 
according to the data of ref. [4] (lower line) 

Bi, 

Bil 0.1 0.5 5 10 20 50 cc 

0.1 
0.1962 0.5388 1.8906 2.2201 2.4243 2.5664 2.6667 
0.1967 0.5384 1.9048 2.2436 2.4551 2.5975 2.6992 

0.5 
0.5384 0.9208 2.4953 2.8880 3.1347 3.3002 3.4115 
0.5388 0.9216 2.4775 2.8595 3.0976 3.2555 3.3745 

5 
1.9048 2.4926 5.2380 6.0213 6.5239 6.8641 7.1353 
1.8906 2.4775 5.2167 5.9878 6.4719 6.8069 7.0438 

10 
2.2437 2.8881 6.0213 6.9566 7.5664 7.9830 8.2782 
2.2201 2.8595 5.9878 6.9064 7.4966 7.9017 8.1967 

20 
2.4551 3.1347 6.5239 7.5664 8.2539 8.7264 9.0462 
2.4243 3.0976 6.4719 7.4966 8.1682 8.6260 8.9580 

50 
2.5975 3.3003 6.8641 7.9830 8.7269 9.2410 9.5664 
2.5664 3.2555 6.8069 7.9017 8.6260 9.1264 9.4864 
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yield 

a+(p,Fo,r) = 

(T,-T,&!?EPdA(Bi,T)[T-((r+2)p2] - 
l-v 2(r+i)(r+3)(A-Pd) 

x {exp[-A(Bi,T)Fo]-eexp(-PdFo)}. (23) 

The variation of 

B 

+ 
= a,(p>Fo)(l -v) 

/=(Tc - T,) 

on the cylinder and sphere surface at Pd = 2, Bi = 1, 
10, and cc and comparison with exact solutions are 
shown in Fig. 1. The maximum shear stress is attained 
on the surface of a body. It is seen from the plots that 
a fixed value of Pd such a value of Fo* is achieved 
at which this stress attains its critical value 0). The 
differentiation of equation (23) with respect to Fo at 
p = 1 yields 

Fo* = [lnA(Bi,r)-lnPd]*[A(Bi,r)-Pd]-’ (24) 

a$(1 -v) A(Bi, r) 

b^f=BE(TC-TTo)=(r+l)(r+3) 

A(Bi q 

[ 1 
ACEi, WPd- A(Bi, r)) 

X L 

Pd (25) 

At fixed numbers Bi and Pd the above equations give 
the time Fo* and the value of the maximum critical 
stress 0) in the units and components in the form of 
a plate, cylinder and a sphere in the case of emergency 
shut-downs of atomic and thermal power stations [8]. 
It should be noted that these equations give a very 
high accuracy of predictions. Analogous equations 
were also obtained for the walls of a pipeline [6]. 

(3) Let the operator-corollary dependence of tem- 
perature T(p, Fo) on the causes of thermal per- 
turbation C$ ,(Fo), q5*(Fo), q,(p, Fo) be written, accord- 
ing to the proposed method, as an approximate 
solution of the heat conduction problem in the form 

T,(p,Fo) = H,M ,(Fo), 4z(Fo), 

qu(p, Fo), p, Fo, Bi, rl. (26) 

The representation of the operator H, for one arbi- 

I I I I I 
0 0.2 04 0.6 0.6 1.0 1.2 

FO 

FIG. 1. Variation of shear stresses on the surface of a cylinder 
and a sphere : -, calculation by equation (23) ; 0, exact 

solution. 

trary and the rest fixed entry functions of the causes 
by a simple and accurate enough functional relation 
makes it possible to develop an efficient analytical 
method for solving inverse heat conduction problems 
(IHP). Below, an IHP is presented which is related to 
the problem of controlling the internal source of heat 
generation by means of the set admissible tempera- 
tures on the body surface. Let q,(p, Fo) = qJp)w(Fo), 
where q,(Fo) is the known function and w(Fo) 
is the control function. The temperature field inside 
of a fuel element having the form of a cylinder at 
q.(p) = q.( 1 -t Sp ‘>, qu = cast. and under third-kind 
boundary conditions, when the ambient tempera- 
ture is kept constant and equal to T,, is found to first 
approximation in the form 

T,(p,Fo) = H,[q,(p,Fo)> P, Fol = To 

+ q,R *A(Bi, 6) F0 

1 s 
o exp[-A(Bi,h)(Fo-z)]w(r)dz 

X 
8+46+Bi(4+6) 

Bi 
-4p*-6p4 1 (27) 

where 

A(Bi, 6) = 

10Bi[Bi(3S2+166+24)+24(6+2)2] 

Bi2(4s2+256+40)+40Bi(6*+56+6)+120(6+2)*’ 

(28) 

By virtue of the fact that the optimal first basic func- 
tion has been selected, solution (27) in the class of 
functions w(Fo) that satisfy the condition 

&rW w(Fo) = F_ypW(p) = 1 

will rather rapidly approach the exact limiting 
solution with an increase of Fo. Assume that 
T(1, Fo)- T, = @(Fo) is the admissible temperature 
on the body surface. Then equation (27) will yield 

@(Fo) = 
4q,R2(6+2)A(Bi,6) 

1Bi 

X exp[-A(Bi,a)(Fo-z)]w(z)dT 

where 

w(Fo) = 
4q.;$+2) [&.E +@(Fo)]. 

(29) 

The inverse heat conduction problems associated with 
the heat flux recovery on the surface of a plate and 
tube wall from the temperature curve recorded in 
time at one point are reduced to the Volterra integral 
equations with convolution-type kernels the solutions 
of which are found in the form of simple integrals [9]. 

(4) In order to preserve the exponential stabilization 
of the temperature fields in time and along the longi- 
tudinal coordinate in the solutions of the internal 
problems of convective heat transfer for fluid flows in 
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straight tubes, it is necessary to carry out twice the 
Laplace-Karson integral transformation with respect 
to parabolic variables and then, for the transformed 
equation of transfer from the rest elliptic coordinates 
(one or two variables), to construct a discrete ana- 
logue with the application of the finite element method 
to the entire region of the tube cross-section be means 
of the residual orthogonalization to the basic func- 
tions. By taking the entire tube cross-section as a 
finite element, without breaking it up, it is possible 
to employ most efficiently the conditions of thermal 
loading at the boundary when setting up the structure 
of an approximate analytical solution. This method 
was used for the solution of unsteady-state problems 
of heat transfer in a plane channel and round tube 
[12]. Under constant temperature conditions on the 
walls and at the entrance to the tube these solutions 
gave a good coincidence, already in the third approxi- 
mation, with the solutions of ref. [ 111 which had been 
found by the method of characteristics in the sixth 
and seventh approximations. Note that the method 
suggested in the present paper finds efficient solutions 
at any variable thermal loading [2, 121. 

The advantage of simultaneous application of the 
Laplace-Karson double integral transformation and 
of the projection method to unsteady-state problems 
of heat transfer is especially evident when it is required 
to determine the temperature in tubes with non-classi- 
cal cross-sections and it is necessary to take into 
account their two-dimensional character and when 
the temperature fields in the flow of the medium 
depend on x, y, z and time t. 

(5) Now, the solution of a problem will be given 
which also involves two integral transformations but 
with different kernels. Determine, in a long cylin- 
drically shaped rod (0 ,< x < co), the redistribution 
of temperature T(r, x, t) due to the given heat flux to 
the centred portion of the end surface and thermal 
insulation of the remainder 

aT ( > -k x=o 
= q(r, 0, 0 ,< r G r. 

(30) 
aT 

( > -%G xz(j 
= 0, r. < r < R. 

A portion of heat is removed through the side surface 
(r = R, 0 < x < 00) into the surrounding medium 
having a constant temperature To. The following 
notation will be used for the temperature field in 
dimensionless variables 

OD T(p,X,Fo)cosCXdx. 

Then, after carrying out the Fourier cosine trans- 
formation and Laplace transformation over the space 
(0 < X < co, 0 < Fo < co) taking into account the 
transition formula 

a2T aT 
- 2 - (t’+P)~*(P> 5,P) 

ax* aFo . 

the set heat conduction problem will be reduced to 
the form 

= 0 (31) 

dF’* 
7 +Bi F*(P, 5,~) }“_, =O, ($),_,=O. 

(32) 

Here, without losing the generality of the method, it 
was assumed that To = 0. An approximate solution, 
which satisfies exactly boundary conditions (32) lies 
in the set 

where 

I(/&) = (1 -p2)‘p2(‘-*), k > 2. 

Assume that 

q(p,Fb) = MOM(p), d, = 0’ W)l(l,(p)dp 
s 

then it can be found from the governing system of 
equations of type (8) that 

w=t2+p, k= I,2 ,..., n. (34) 

The roots of the basic determinant A(w) are always 
simple and negative. By designating them as o, = 
--A(T)(BzJ < 0,. . . , w, = -AF)(Bz’) < 0, the exact 
fraction Ak(w)/A(w) is expanded in a sum over 
simple poles 

The inversion of equation (34) yields 

R 
adX’ “‘O) = A,,& i=, A’(w) 

i Add s “exp[-Ay)(Bi)(Fo-z)]exp[-X2/4(Fo-t)] 

,, &o--r) 
q(r) dr. (35) 
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Performing the transition to inverse transforms in equation (33) by means of equation (35), changing the order 
of summation over indices k and i and carrying out the apparent collection of terms will yield 

T,(p,X,Fo) = To+- F”~x~[-~~~~~~)(~o-~)lexpI--X2/4(~o--z)lq~~)d~ 
,/b-4 

whem 

&%.BG = $, b&&), bik = z, b=i 
i 

/ 

b II . * . b in 
*. . i. 

b nl *.. b nn 

Here b is the matrix of transition from the polynomial 
bases { ek( p)] to the quasi-orthogonal system of bases 

{+:(~J01 h’ h w ic approximate with a high accuracy 
the system of the Bessel orthogonal functions-the 
eigenfunctions of the elliptical operator of heat 
absorption under third-kind boundary conditions. 
System ($Q(p, Bi)} and solution (36) were largely cal- 
culatedforn=l,2,3,4,Bi=l,4,m. 

Assume in solution (36) that Bi = 0, #(p) = I, 
0 6 p G 1, then it can be found for an isolated rod of 
radius R in dimensional coordinates that 

T(x, t) = To 

+$l--$&exp[-&]dr. (37) 

This expression coincides completely with the exact 
solution for a semi-invite medium (e.g. in soil) under 
the second-kind boundary unctions. 

Let 7(x,, t)- T,, = F(t) be the result of the inter- 
polation of the temperature curve measured at 
point x I. When x , = 0, solution (37) yields 

q(t> _ &~4 d s * F(Qdz 
-JF;ii cl=’ (38) 

When x, # 0, the solution of an IHP becomes more 
complicated and incorrect. In the case of more strin- 
gent limits on F(t) the heat flux on the body surface 
is recovered on the basis of the temperature ‘response’ 
at one inner point x, # 0 in the form 

Thus, the application of integral transformations 
(exact methods) over unilateral variables jointly with 
the orthogonal projection of a residual (approximate 
method) over the domain of variation of bilateral 
elliptic coordinates provides an efficient analytical 
method for solving heat transfer problems. In this 
case, a unified algorithm makes it possible to very 

simply solve a rather complex problem of operational 
calculus-the recovery of the inverted transform by 
the available transform. 

By using integral transformations with different 
kernels over unilateral parabolic variables in con- 
junction with the finite element method implemented 
via the orthogonal projection of a residual to the basic 
axes of the functional space over the entire range of 
the rest bilateral elliptic coordinates of the instan- 
taneous point, an effective analytical method has been 
developed for solving direct and inverse problems of 
unsteady-state heat conduction, internal problems of 
heat transfer in tubes and of thermoelastic stresses. 
The solutions are presented in the form of poly- 
nomials in elliptical coordinates the contents of 
which stabilize ex~nenti~ly along the change in the 
parabolic variables. 

The method provides the solution to the Graetz- 
Nusselt type unsteady-state generalized problems for 
tubes with the two-dimensional profile of the clear 
area (triangle, sector of a circle, ellipse, trapezoid, 
etc.). Owing to this, the method compares favourably 
with the other known analytical methods. 

5. 

6. 

7. 
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METHODE DE RESOLUTION DES PROBLEMES DIRECTS ET INVERSES DE 
TRANSFERTS DE CHALEUR VARIABLES 

R&m&-On propose une mbthode analytique efficace pour la resolution des problemes directs et inverses 
de conduction thermique, de contraintes thermotlastiques et de transfert thermique par des transformations 
integrales simples ou doubles eu egard aux variables paraboliques unilaterales et en amtliorant la mtthode 
des elements finis par la projection residuelle orthogonale dans un certain espace fonctionnel, pour le 

domaine complet de variation des coordonnees elliptiques bilaterales. 

EINE METHODE ZUR BERECHNUNG DIREKTER UND INVERSER PROBLEME DES 
INSTATIONAREN W.%RMETRANSPORTS 

Z~~~~-Zur Lgsung direkter und inverser Probleme der W~~eleitung, thermoelastischer 
Spannungen und des Warmetibergangs wird eine effektive analytische Methode vorgeschlagen. Zuniichst 
wird eine einfache und doppelte Integral-Transformation mit unsymmetrischen parabolischen Variablen 
eingefiihrt. Dann wird die Methode der Finiten Elemente fur die orthogonale Residuum-Projektion 
in einem speziellen Funktionalraum iiber den ganzen Variationsbereich der symmetrischen elliptischen 

Koordinaten implementiert. 

OB OAHOM METOaE PACgETA I-IPIIMbIX H OEPATHbIX 3Amrl 
HECTAHMOHAPHOFO TEI-IJIOOBMEHA 

Ammxauas-@niorparHblM H nsyxrpaTHblMnpnMeHeHHeMHHTerpanb~npeo6pa3osaHHg no OAIWC- 

TO~OHHHM napa6onrsrecxet.r IIepeMeEiruM H p~~~i3aiiidi MeTona KoHewbix 3neMeHToB OpToroeanb- 

HOi% npoemtHH KeB513KH B HeKoTopoM ~YH~~OH~bHOM npoc?pmmm no BC& o6nacrrr ~MeHeH~~ 

~B)'XCTO~HHHX3 XmmTRSeCLRX.XooplUIHBlnpeaRorieH~K~~aH~~~~ hnerogpezuemn 

npnrb~x iio6paT~bix 3axa~TennonpoeomiocT~, TepMoynpyrHxHanpsltc~HiiHTerrJrooGMeeHa. 


